
Reasoning Models Reason Inefficiently

Abstract

Large language models (LLMs) produce long, structured reasoning traces that
can inflate latency and cost. Our results suggest that while backtracking can help
models arrive to the correct answer, they are not a faithful picture of the minimal
computation required to solve a task—they can be compressed or restructured.
In this paper, we show how to build more efficient and interpretable reasoning
processes by identifying and targeting internal directions associated with ineffi-
ciency. For reproducibility, our code and evaluation scripts are publicly accessible
at <my-github-link-here>.

1 Introduction

We demonstrate steering and projection interventions that move models to strictly better points on the
mean tokens, accuracy plane, evidence of avoidable computation. We conducted experiments on the
OpenR1-Math-220k dataset [Open R1 Project, 2025], a large-scale collection of 220,000 verified
mathematical problems. Across 2,000 samples from the open-r1/OpenR1-Math-220k dataset, our
interventions reduced both output length and the number of tokens until answer without hurting
exact-match accuracy.

We find that steering away from backtracking reduces the average output length and the number
of tokens until answer, without reducing exact-match accuracy. Prior work has suggested that
backtracking can serve as a useful proxy for self-correction [Venhoff et al., 2025], but also noted
inefficiencies due to overthinking in reasoning traces [Anonymous, 2025].

This demonstrates that reasoning models can solve problems more succinctly than their default
reasoning traces reveal, highlighting inefficiencies in current reasoning modes.

2 Related Work

Backtracking as intentional behavior: Chain-of-Thought (CoT) prompting generates step-by-step
rationales and improves accuracy in multistep reasoning tasks [Wei et al., 2022]. Self-consistency
further increases CoT through the sampling of multiple traces and the aggregate of answers [Wang
et al., 2023]. Recent reasoning models explicitly optimize for long structured thoughts, making
length/accuracy trade-offs central to the evaluation [DeepSeek-AI, 2025].

Longer inference can sometimes reduce accuracy and induce rumination, suggesting inefficiency
regimes in “reasoning mode” [Anonymous, 2024]. Our work complements these by showing
activation-space interventions that move models to better points on the tokens–accuracy frontier.
Because we do not rely on inference-time interventions but instead directly modify the model itself,
we open-source our more efficient model to facilitate further research and reproducibility1.

Steering vectors and representation editing: A growing body of work explores steering vectors,
task arithmetic, and representation editing to control LLM behavior [Ilharco et al., 2022, Rajamanoha-
ran et al., 2025]. Most existing studies focus on small-scale tasks, synthetic probes, or qualitative

1Model release available at: <my-hf-link-here>

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

<my-github-link-here>
<my-hf-link-here>

demonstrations, flipping sentiment or refusals for example, Few evaluate whether such methods yield
measurable benefits on real reasoning workloads. By quantifying efficiency improvements on a large
math reasoning dataset (open-r1/OpenR1-Math-220k), our work shows that steering interventions
can reduce computation while preserving accuracy, providing the kind of dataset-level evidence
needed for deployment in practical reasoning pipelines.

3 Methodology

3.1 Steering Vectors

To obtain candidate steering vectors, we collected a balanced dataset of 10,000 reasoning traces
from the LLaMA-8B model. Each example was processed with a fixed “step-by-step” suffix to elicit
chain-of-thought reasoning. For every layer ℓ in the model, we extracted the hidden activations
associated with two conditions of interest: (i) traces exhibiting overt backtracking cues (e.g., “Wait,
actually...”), and (ii) traces without such cues.

Formally, let {hback
i,ℓ }Ni=1 denote activations from condition (i) at layer ℓ, and {hnon

j,ℓ }Mj=1 those from
condition (ii). We compute mean activations for each condition:

µback
ℓ = 1

N

N∑
i=1

hback
i,ℓ , µnon

ℓ = 1
M

M∑
j=1

hnon
j,ℓ .

The steering vector at layer ℓ is defined as the normalized difference:

uℓ =
µback
ℓ − µnon

ℓ

∥µback
ℓ − µnon

ℓ ∥2
.

Each uℓ thus represents the axis in hidden space that maximally separates backtracking from non-
backtracking activations (see Appendix Figure 3 for PCA visualizations across layers). These vectors
form the basis for the intervention operators described next.

3.2 Transformation Operators

Given a weight matrix W and a steering vector u, we define a general parametric operator:

W ′ = (I + β uu⊤)W, β ∈ R.

This family of linear transforms modifies the component of W aligned with u:

• Suppression (Projection Removal / Orthogonalization). Setting β = −1 removes the u-
aligned component, ensuring W ′u = 0, i.e. the weights no longer express the backtracking
direction.

• Amplification (Directional Scaling). For arbitrary β = α, this scales the u-aligned
component by (1 + α). Positive α strengthens backtracking alignment, while negative α
weakens it.

These represent complementary ways of altering the model’s use of the steering direction u. Suppres-
sion removes the contribution of u entirely, testing whether performance depends on the presence of
this direction.Amplification continuously strengthens or weakens the u component, letting us explore
graded causal effects rather than all-or-nothing edits. We test whether the steering vector encodes a
causal feature of the model’s reasoning process. Applied at different layers, these edits allow us to
examine where in the computation its influence is most critical.

3.3 Metrics

To quantify the effects, we evaluate interventions using the following metrics:

(1) Exact-match accuracy: Let y be the gold answer and ŷ the model’s extracted final answer. An
example is correct iff ŷ = y after canonicalization (lowercasing, whitespace trim, and task-specific
normalization, e.g., stripping \boxed{} or units where applicable).

2

(2) Output length: We report the mean number of output tokens E[lentok(x̂)], where tokenization is
computed with the model’s native tokenizer. When relevant, we also report tokens-until-answer: the
number of generated tokens up to and including the first occurrence of the extracted correct answer.
To capture the trade-off between correctness and efficiency, we analyze the empirical Pareto frontier
of accuracy versus output length, highlighting methods that achieve higher accuracy with shorter
generations.

(3) Backtracking rate at sentence starts: We measure the fraction of generated sentences that
begin with backtracking cues such as “wait,” “actually,” “let me redo,” “on second thought” (full
list in Appendix Table 2). This provides a coarse proxy for how often models explicitly revise or
undo their reasoning mid-trace.

4 Results

Figure 1: Pareto frontier of accuracy vs. mean output tokens. Points on the frontier maximize accuracy while
minimizing length. Amplification (α=0.6, 8k) and Suppression (L31→L31, 8k) are Pareto-optimal

4.1 Accuracy Across Steering Methods

Table 1 compares accuracy and efficiency across interventions. The strongest accuracy is Baseline
(16k) at 59.7%. Several edits match this while using fewer tokens: Suppression L10 → All (16k) attains
59.5% (only −0.2 pts vs. baseline) with shorter outputs (5103 vs. 6227 mean tokens); Amplification
(α=0.6) L10 → All (8k) also reaches 59.5% at 4383 mean tokens; and Suppression PrevIdx L31 →
L31 (8k) matches 59.5% with just 3485 tokens on average. These results show that targeted steering
can recover baseline-level accuracy without extended context or long generations.

4.2 Backtracking Cue Frequency

Transformations reducing sentence-initial backtracking cues in Figure 2 are the same edits that
shorten outputs (Suppression L31→L31: 3485 tokens vs. Baseline 6227) while maintaining accuracy
(59.5%) in Table 1. Amplification keeps accuracy high but leaves more backtracking cues than
Suppression, consistent with its longer generations than the best Suppression runs.

4.3 Pareto Frontier: Accuracy vs. Length

The frontier highlights two efficient regimes: (i) Lightweight Amplification (L10, α=0.6, 8k) and (ii)
Layer-specific Suppression (L31→L31, 8k). Both match top accuracy (59.5%) at substantially fewer
tokens than 16k baselines (4383 and 3485 vs. 6227).

Overall, these results show that steering interventions can rival or even match extended context
baselines while using significantly fewer tokens. The most effective strategies involve either (1)
lightweight backtracking (α = 0.6) or (2) layer-specific suppression (L31), both of which lie on the
Pareto frontier.

3

Edit Applied layers Vector source MaxTok Correct (%) Incorrect (%) Empty (%) Avg Len Tokens to Ans

Baseline
Baseline – – 16k 59.7 27.5 12.8 6226.9 1251.3
Baseline – – 8k 56.3 33.6 10.1 4245.7 883.7

Supress Backtracking (W ′ = (I − uu⊤)W)
Supression All L10 16k 59.5 31.8 8.8 5103.5 975.1
Supression L31 → L31 L31 8k 59.5 31.3 9.2 3485.2 889.6
Supression Single L10 L10 8k 58.1 34.9 7.0 4290.2 894.4
Supression All L10 8k 57.2 36.7 6.1 3776.9 830.7
Supression Single L19 L19 8k 56.1 34.9 9.0 4426.9 804.3
Supression All L19 8k 56.1 34.0 9.9 3327.6 793.0
Supression All L31 8k 55.9 33.3 10.8 4357.5 828.4
Supression Single L25 L25 8k 55.2 35.6 9.2 4316.5 884.1
Supression All Per-layer (own) 8k 54.7 36.7 8.6 3393.1 768.1

Amplify Backtracking (W ′ = W + αuu⊤W)
Amplification (α = 0.6) All L10 L10 8k 59.5 31.3 9.2 4382.8 1023.8
Amplification (α = 0.8) All L10 L10 8k 57.9 32.7 9.5 4448.8 977.3
Amplification (α = 1.0) All L10 L10 8k 57.0 35.6 7.4 4448.1 976.1

Table 1: Accuracy and efficiency across steering interventions. While the Baseline (16k) achieves the highest
raw accuracy (59.7%), several targeted edits match this performance while requiring fewer tokens. In particular,
Suppression L10→All (16k), Amplification (α=0.6) L10→All (8k), and Suppression L31→L31 (8k) all reach
59.5% accuracy but shorten outputs by 1000–3000 tokens on average. Steering can recover baseline-level
accuracy with reduced generation length, highlighting layer-specific suppression and light amplification as
especially effective strategies. “Applied layers” lists the edited layers; “Vector source” indicates the layer used to
compute u; “Per-layer (own)” means each layer used its own uℓ.

Figure 2: Suppressing backtracking directions removes unnecessary detours in reasoning traces, substantially
cutting both backtracking frequency and overall output length without degrading task accuracy.

5 Future Work

Our experiments show that simple linear interventions modestly improve the accuracy–efficiency
tradeoff in reasoning models, though many directions remain for future work.

First, we plan to evaluate our steering interventions out-of-domain, using new datasets. This will
clarify whether the observed gains are genuine improvements in reasoning robustness or artifacts of
in-domain adaptation. Second, we will test robustness under prompt perturbations.

A recurring theme in our work log is that steering vectors often encode a mixture of behaviors. For
example, a backtracking direction may contain both helpful corrections and unhelpful hesitation.
Rather than fully suppressing against all other discovered vectors, we aim to propose an oblique pro-
jection method that selectively subtracts away overlapping components with “undesirable” directions
while preserving overlap with “helpful” directions, allowing for more fine-grained control over causal
subspaces in model activations.

4

References
Anonymous. Thoughtology: Understanding and controlling the thoughts of reasoning llms. arXiv

preprint arXiv:2408.03314, 2024.

Anonymous. Stop overthinking: A survey on efficient reasoning for large language models.
ResearchGate preprint, 2025. URL https://www.researchgate.net/publication/
390038709_Stop_Overthinking_A_Survey_on_Efficient_Reasoning_for_Large_
Language_Models.

DeepSeek-AI. Deepseek-r1: Scaling up reasoning via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Gabriel Ilharco et al. Editing models with task vectors. arXiv preprint arXiv:2212.04089, 2022.

Open R1 Project. Openr1-math-220k: A large-scale dataset for mathematical reasoning.
open-r1/OpenR1-Math-220k on Hugging Face, 2025. Generated by DeepSeek R1 with 2–4
verified reasoning traces per problem; described in Hugging Face dataset card and Open R1 blog
update; licensed under Apache 2.0.

Sathya Rajamanoharan et al. Representation engineering: A top-down approach to steer large
language models. arXiv preprint arXiv:2501.01719, 2025.

Thomas Venhoff et al. Steering vectors for backtracking in thinking llms. arXiv preprint
arXiv:2506.18167, 2025. URL https://arxiv.org/abs/2506.18167.

Xuezhi Wang et al. Self-consistency improves chain of thought reasoning in language models. In
ICLR, 2023.

Jason Wei et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

5

https://www.researchgate.net/publication/390038709_Stop_Overthinking_A_Survey_on_Efficient_Reasoning_for_Large_Language_Models
https://www.researchgate.net/publication/390038709_Stop_Overthinking_A_Survey_on_Efficient_Reasoning_for_Large_Language_Models
https://www.researchgate.net/publication/390038709_Stop_Overthinking_A_Survey_on_Efficient_Reasoning_for_Large_Language_Models
https://arxiv.org/abs/2506.18167

6

A Appendix

Figure 3: PCA projections of hidden activations for backtracking vs. non-backtracking traces across all layers.
Each panel shows the 2D PCA projection of activations at a given layer ℓ. These visualizations illustrate the
separation that underlies the steering vectors uℓ described in Section 3.1.7

Category Example Cues

Backtracking “Wait”, “Let’s reconsider”, “On second thought”, “I made a mistake”, “Let’s try
again”

Deduction “Therefore”, “This implies”, “Hence”, “Thus”, “It follows that”
Verification “Let me check”, “verifying”, “rechecking”, “confirming”, “This simplifies to”
Uncertainty “I think”, “maybe”, “probably”, “not sure”, “this might be”
Step-by-step “First”, “Then”, “Next”, “Finally”, “Let’s break it down”
Heuristic shortcut “quick trick”, “shortcut”, “we can estimate”, “approximate”

Table 2: List of cue phrases used to identify and categorize reasoning patterns from sentence onsets.

A.1 Metrics: Additional Details

A.1.1 Backtracking Rate

Given a generated output x̂, let S(x̂) be the set of sentences (segmented either with spaCy rules or
a simple period/newline heuristic). We compute the backtracking rate as the fraction of sentences
whose first tokens match a cue in the lexicon from Table 2:

BacktrackRate =
1

|S(x̂)|
∑

s∈S(x̂)

⊮{prefix(s) ∈ C}.

A.1.2 Token–Accuracy Pareto

To capture the efficiency trade-off between correctness and verbosity, we also analyze the empirical
Pareto frontier of accuracy versus output length. A method A dominates B if Acc(A) > Acc(B) and
Len(A) < Len(B).

8

	Introduction
	Related Work
	Methodology
	Steering Vectors
	Transformation Operators
	Metrics

	Results
	Accuracy Across Steering Methods
	Backtracking Cue Frequency
	Pareto Frontier: Accuracy vs. Length

	Future Work
	Appendix
	Metrics: Additional Details
	Backtracking Rate
	Token–Accuracy Pareto

